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Abstract  - The diffusional method, a new, simple and natural concept, is introduced for solving convection-diffusion equations. 
The inherent formulation leads to the variational scheme for one-dimensional steady-state problems; however, the formulation is 
general and can be directly used in multidimensional analysis. Additionally, a lumped capacitance (mass) matrix first-order time 
integration technique is presented that is unconditionally stable in its implicit form and conditionally stable for Courant numbers 
less than one in its explicit form, The explicit form is shown, by comparison with a two-step Taylor-Galerkin scheme, to present 
an excellent performance for solving transient boundary layer problems and Burger's non-linear equation. Because of dampening 
due to first order accuracy of the time integrator, the method is not well suited to solve advection dominated problems involving 
travelling waves at high P&let numbers; in this respect, a brief analysis is made on the explicit form of the Taylor-Galerkin 
scheme. This work also presents a performance analysis of the method when used in conjunction with adaptive time stepping 
procedures. The resulting adaptive PMGV scheme works very well for boundary layer problems and for solving Burger's non-linear 
viscous and non-viscous equations. © 1999 I~ditions scientifiques et m~dicales Elsevier SAS. 
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Resume - Methode de dif fusion transitoire unidirnensionnelle : solutions adaptat ives par la m~thode des ~l~ments finis 
appliqu~e aux probl~mes de convect ion-dif fusion.  La m~thode de diffusion, un concept nouveau, simple et naturel, est pr~sent~e 
pour r~soudre des ~quations de convection-diffusion. La formulation inh~rente m~ne au schema variationnel pour des problemes 
unidimensionnels en r~gime stationnaire ; cependant la formulation est g~n~rale et peut ~tre utilis~e directement dans I'analyse 
multidimensionnelle. En outre, on pr{sente une technique d'int~gration temporelle de premier ordre utilisant une forme concentr~e 
de la matrice de capacitance. Cette technique est inconditionnellement stable dans ses formes implicites et conditionnellement 
stable pour des nombres de Courant plus petits que I'unit~ dans sa forme explicite. Par comparaison avec le sch{ma Taylor-Galerkin 
de deux pas, la forme explicite pr~sente une performance excellente pour r~soudre des probl~mes de couche limite transitoire et 
I'~quation non lin~aire de Burger. La methode n'est pas tout & fait convenable, a cause de I'amortissement d6 ~ I'exactitude de 
premier ordre de I ' int{gration temporelle, pour r~soudre des probl~mes domin{s par I'advection en ce qui concerne des ondes 
voyageuses (travell ing waves) a nombres de P~clet eleves ; sur ce sujet, on pr~sente une petite analyse du schema explicite de 
Taylor-Galerkin. On pr~sente aussi une analyse de performance de la methode diffusionnelle coupi{e ,~ des proc~d~s adaptatifs 
d'avancement temporel. Le sch{ma adaptatif PMGV r~sultant s'est montr~ particulierement performant pour des probl~mes de 
couche limite et pour la r{solution des ~quations non lin~aires de Burger. © 1999 i~ditions scientifiques et m~dicales Elsevier SAS. 

convection-diffusion / elements finis / m~thode variationnelle / m~thode de Petrov-Galerkin / m~thode diffusionnelle 

N o m e n c l a t u  re 

A parameter defined in equation (22) 
Am function defined in equation (57) 
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as coefficient defined in equation (8) 
at coefficient defined in equation (15) 
B parameter defined in equation (22) 
Bm functions defined in equation (58) 
bs coefficient defined in equation (8) 
bt coefficient defined in equation (15) 
C Courant number (= u At~h)  
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C capacitance matrix 
Cs coefficient defined in equation (8) 
ct coefficient defined in equation (15) 
D force vector 
di parameter defined in equation (8) 
d* parameter defined in equation (53) 
F local Fourier number (= G A t / h  2) 
G amplification factor, defined in equation (41) 

amplification factor, defined in equation (38) 
G* ratio of the amplification factors 
h step size 
K stiffness matrix 
k wave namber 
f wavelength 
L characteristic length 
n time level 
N shape function 
p parameter defined in equation (5) 
P global P~clet number (= u L/2  I') 
Pe local P6elet number (= u h/2 F) 
Q source term 
Re Reynolds number, dimensionless 
t time 
u x-velocity 
v y-velocity 
W weighting function 
x spatial variable 
y spatial variable 

Greek symbols 

c~ upwind parameter 
~m parameter defined in equation(59) 

truncation error 
A argument defined in equation (ag) 
A* relative celerity 
Am parameter defined in equation (59) 
cr parameter defined in equation (46) 
¢ approximate value for the dependent variable 

dependent variable 
0 relaxation parameter 
F diffusion coefficient 

Superscripts 

exact value 
E exact solution 
n time level 
p predicted value 

Subscripts 

i space level 
n time level 
new new value 
old old value 
opt optimal value 

s steady-state term 
t transient term 
x x direction 
y y direction 

1. INTRODUCTION 

Since the seventies fast progress has been observed in 
the development of numerical  and analyt ical  techniques 
for solving convection-diffusion and fluid mechanics 
problems. Fini te  difference and finite volume methods 
[1 4] were, till the beginning of the eighties, the best  
established procedures. Today, due to the widespread 
use and improvements of early Petrov-Galerkin  methods 
[5 6], such as the balancing diffusion scheme [7], tile 
streamline upwind Petrov-Galerkin  (SUPG) method [8], 
tile consistent approximate  upwind method [9-10] and 
other techniques, the finite element (FE) method has 
become extremely competi t ive with respect to tile other  
numerical methods.  However most of the FE  proposed 
techniques present ad-hoc reasoning, and, al though not 
leading to substant ia l  errors, do not present opt imal  
solutions to two or three-dimensional  problems and 
thus require special manipulat ions  for many kinds 
of problems. This work aims at  contr ibut ing to the 
minimisat ion of the errors associated to these ad-hoc 
procedures. 

The l i terature  associated to FE  solutions to 
convection-diffusion and fluid mechanics problems is 
copious and full reviews can be found elsewhere [11 
15]. S teady-s ta te  one- dimensional Petrov Galerkin and 
variat ional  methods lead to opt imal  solutions. However, 
t ransient  solutions arising from the variat ional  method 
are generally unstable;  those solutions arising from the 
Petrov Galerkin formulation are uncondit ional ly sta- 
ble for implicit  problems (0 _> 0.5) but  show excessively 
dampened  solutions; (Bubnov-) Oalerkin 's  method has 
also been shown not to be appropr ia te  for obtaining 
general t ransient  or s teady-s ta te  solutions [12]. One 
should notice tha t  only heuristic arguments  have been 
used to obta in  two-dimensional formulations by the 
Pe t rov-Gale rk in  method.  

Lagrangian methods,  separately or combined with 
Eulerian methods,  have been extensively used to solve 
t ransient  advect ion-dominated problems. In this way, 
different part icle t racking techniques, involving adap-  
tive [16], adjus table  hidden fine-mesh approach [17], 
modified single-step reverse part icle t racking Eulerian- 
Lagrangian schemes [18] have been developed. However, 
these methods make use of either t ime consuming pro- 
gramming techniques or are not readily available for 
two- or mult idimensional  problems. Two- [19] and multi-  
dimensional [20-21] finite element methods  of charac- 
teristics are available. A Taylor -Galerk in  scheme orig- 
inally proposed by Donea [22] and its one-dimensional 
equivalent character is t ic-Galerkin formulation [11, 23] 
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were proven to perform better than the classical Lax- 
Wendroff and implicit Crank-Nicolson schemes [24 25]; 
their range of stability is limited to Courant numbers 
C, smaller than 0.57, unless a lumped mass matrix is 
used in an iterative procedure and, in this case, the 
stability linfit increases to C -  1. A two-step Taylor 
Galerkin formulation [24] has also been proved to work 
well; however the procedure is conditionally stable and 
the limiting C value is identical to the one related to 
the characteristic Galerkin method. The use of space- 
time elements [26 29], higher order methods [30 31] 
and h - p  finite element nmthods [13 14] for solving 
convection-diffusion problems are also available. 

In addition, the literature associated to adaptive 
finite element mesh refinement techniques has grown 
considerably in the last decade [13,14,32-36]. Work has 
also been done on: 

steady-state adaptive finite element solutions to 
convection-diffusion and compressible and incompress- 
ible fluid mechanics problems [10, 37 39]; 

transient mesh adaptive finite element [40 41] and 
finite-difference [42 43] schemes for diffusion problems; 

transient finite element schemes for advection- 
dominated or hyperbolic [16 18, 44] problems, 
convection-diffusion [45 46] problems and Navier 
Stokes equations [47 48]. 

Solutions to transient convection-diffusion problems 
are problem-sensitive; thus, solving techniques appli- 
cable to travelling wave (advection-dominated) type 
problems may not be adequate for boundary layer prob- 
lems; a scheme for linear problems may not work for 
non-linear problems [12]. Therefore, the basic algo- 
rithms used in mesh-adaptive/t ime-adaptive schemes 
when applied to convection-diffusion problems deserve 
more careful attention. 

Of special interest to this work, Oresho et al [49] 
proposed an implicit adaptive time integrator based 
on a second-order accurate Adams Bashforth predictor 
(ABP) and the trapezoid rule as the corrector. The ABP 
requires the evaluation of rates of change at previous 
time planes that  are obtained through successive 
applications of the trapezoid rule. The corrector step 
uses again the trapezoid rule which is non-dissipative, 
completely stable and second-order accurate. Bixler [50] 
changed Gresho et al's integrator by incorporating three 
modifications: (1) the one leg-twin form of the trapezoid 
rule replaced the trapezoid rule as the corrector, leading 
to a more accurate local time truncation error estimate; 
(2) a more stable predictor was obtained by changing 
the expression for obtaining rates of change and (3) the 
formula used for predicting time-step size was redressed 
to match the new corrector. Bixler's scheme was used 
in adaptive procedures applied to heat transfer and 
the incompressible Navier-Stokes equations [47 48] and 
to thermal problems [45 46]. Gresho et al [49] also 
presented a scheme based upon Euler's forward (as 
predictor) and backward (as an implicit corrector) 
formulas; however, they suggested that  the scheme 
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should be used only for obtaining steady state solutions 
because of the dissipative nature of the resulting finite 
element (FE) scheme. 

Tile specific objectives of this work are: 
to present a new and natural concept to solving 

convection-diffusion equations, the diffusional method, 
based on changing the original partial differential 
equation, instead of changing the numerical method, 
so that  a self-adjoint form is obtained and leads to an 
optimal one-dimensional steady-state scheme; 

to show that  the diffusional method can be naturally 
extrapolated to multidimensional problems; 

to analyse the range of applicability of a lumped 
capacitance matrix diffusional fornmlation; 

to investigate the possible use of the lmnped form of 
the one-dimensional two-step Taylor Galerkin scheme 
as a tool for solving transient non-linear equations and 
as a flltm'e tool for a one-step solver; 

to exemplify the associated performance of the 
transient sclmmes by means of the solution of two linear 
transient problems and Burger's non-linear equation; 

to present and compare explicit and implicit time- 
adaptive finite element procedures for solving linear and 
non-linear one-dimensional convection-diffusion equa- 
tions, based on tile diffusional method, the TSTG-a  
(lumped) scheme and literature available finite differ- 
ence adaptive integrators. 

2. BACKGROUND 

Tile transient one-dimensional convection-diffusion 
equation can be written in the non-conservative form as 

a + 
a ~  + ~ _ _ _ v e = 0 ( 1 )  a-7 ax ax g 

where ~ is the dependent variable, and Q, u and F may 
depend on ~, t and x. 

2.1. Steady-state  f ini te e l e m e n t  
one -d imens iona l  solut ions 

The dependent variable ~ is approximated, as usuM, 
by means of 

where N ( =  N~) is the shape fimction, ¢ the approximate 
value for f and ¢ ( -  ¢i) are the nodal points (vector). 

The variational and Petrov-Galerkin methods are 
quoted in the literature to be optimal methods when 
applied to the one-dimensional steady-state convection- 
diffusion equation. Because of their importance in this 
work, they will be briefly reviewed. On tile other hand 
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it is well known that  Galerkin's formulation leads to 
oscillatory results as the local P6clet number increases 
above 2 [12] and will not be considered at this point. 

For the present, Q, u and F are assumed to be 
constant. Given the weighting function W and the 
domain 0 _< x _< L, the variational approach is based on 
determining p = p(z), so that  

Wp Ud---~-d--- ~ ~xx+Q d x = 0  (3) 

becomes self-adjoint. By making use of the associated 
weak formulation, the above equation (3) is written as :  

/ L  [ W ~  (pu+F~xPx)+ d W -  d~ ~-z l p ~ x + W p Q ] d x  

+ W p F  d e  L = 0  (4) 
dx o 

By forcing the convective term of the resulting 
integral to be zero, one arrives a t :  

p = p o e  2Px/L (5) 

where P = global P6clet number = u L/2 F and p0 is a 
constant. 

If a (Bubnov-)Galerkin fornmlation is applied 
( W =  N~) equations (4) and (5) lead t o :  

/ L [ d N ~  dN~ e_2P./L ] 
L~X-x ( F e - 2 P x / L )  ~ x  ~j + Ni Q dx = 0 

(6) 
Assume N~ to be the linear interpolating functions 

and consider the discretization nodes i - 1, i and i + 1, 
whose co-ordinates are, respectively, x. ,, x~ and x~+l, 
such that  the step size is h = x~ -x~_~ = Xi+l - - X i .  

In order to eliminate tile difficulties associated with 
the numerical integration of the above equation [51 52], 
define p using an origin at x = x~, and a local Pdclet 
number, Pe = u h/2 F, and, thus, equation (6) becomes: 

L hh [~-x[dNi (Fe_2P~x/h) ...~_x 2 P¢x/hQ] dx = 

(7) 
leading, after integration, to the nodal equation, 

as (]~i-1 + b~ ¢i + es (~i+1 -~- di = 0 (8) 

where 
a s  = 1 - e 2 P e ;  bs ~ e 2Pc -- e - 2 P e ;  

(9) 
• _ _  - - P c  2 e~ = - l + e  -2P~ di ~h2  (eP~ - e ) 
' 2 P e F  

The Petrov-Galerkin [8] method consists in solving 
the steady-state convection-diffusion equation by means 
of the weighted residual integral: 

W de d F + Q  d x = 0  (10) 
u dx dx 

where now the weighting function is given by: 

- -  c~h dN~ sign(u) (11) W = V ~ ,  ~ V ~ + W ~ = N ~ + ~ -  d~- 

where, for optimal solutions, 

1 
I~1 = ~opt = cothlPel irel (12) 

By substituting the above equation (12) in equa- 
tions (10) and (11), a nodal equation of the same form 
as equation (8) is arrived at, with the following coeffi- 
cients, 

a ~ = - P e ( a + l ) - l ;  b~ = 2 + 2 P e a ;  

Oh 2 Cs = - P e ( e e - 1 ) - l ;  d i -  V (13) 

If, in tile above set of equations, c~ is taken as 0 
or 1, the Galerkin or full upwind fornmlations are, 
respectively, obtained. Tile coefficients given by equa- 
tion (9) are equivalent (after algebraic manipulations) 
to the ones given by equation (13), mutatis mutandis. 
Furthermore, the discontinuous nature of the weighting 
function W in the above equation (11) should also be 
noticed: W is assumed to be discontinuous within the 
element and, in this way, it is applied to evaluate only 
the convection term [8]. 

2.2. T r a n s i e n t  f in i te  e l e m e n t  
o n e - d i m e n s i o n a l  so lu t ions  

Tile following approximate equation, originated after 
spatial and one-step time discretization of the transient 
convection diffusion equation, is classical: 

c (+o÷l_ ,,,) 
+ K [(1 - 0) Cn + 0 +n+l]  + D n = 0 

At 
(14) 

where 0 < 0 < 1 ;  C, K and D are, respectively, the 
capacitance, the conductivity (or stiffness) matrices 
and the force vector, and n is the time level. If the 
problem at hand is one-dimensional, if use is made of 
the terminology defined above for steady-state terms 
such as as, b~ and es, equations (8) and (9), and if new 
analogous transient coefficients are defined (with the 
subscript t), equation (14) can be rewritten in the form: 

n + l  (at + as 0)¢~_,  + (Dr + ks 0) ¢;~+' + (e~ + ~ 0) ¢,'~++11 
= - d ~ + [ a t - a s ( 1 - 0 ) ]  ¢~ , 
-[-[bt  - -  bs (1 - 0)] (~;~ -~- [ct - es (1 - 0)] (~inW1 (15) 

For eventual comparisons, the transient terms of 
the variational formulation of the convection diffusion 
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equation can be obtained by pre-multiplying all terms 
of equation (1) by the function Wp so tha t  [12]: 

W p  ~[  a x F ~ z + Q  d x = 0  (16) 

Re-scaling the integration limits and shape functions 
as before, after integration and sonic algebra, one arrives 
at the following nodal terms applicable to transient 
problems: 

1 [ l _ e 2 P ~  e2P~)] 
a t -  C P e  + P c ( l +  ; 

bt -- 1 -2 P~ 4 Pe] ; C Pe [e2 Pe _ e 

1 
c t -  C P e  [ e - 2 P ~ - l + P e ( l + e - 2 P ~ ) ]  (17) 

u At . 
where C -  is the local Cour~mt or convection 

h 
number. Zienkiewicz and Taylor [12] showed that  the 
above scheme, as applied to the variational scheme, 
is generally unstable. Only for C > 1 the fully implicit 
scheme leads to stable solutions. They also showed that  
the transient form of the Petrov Galerkin method with 
opt imal  upwind performs bet ter  than the variational 
method,  but shows excessive dampening for solving 
problems, except for very small Courant  numbers. No 
further mention will be made of the transient Petrov 
Galerkin scheme. 

A special reference should be addressed to the sec- 
ond order Taylor Galerkin scheme, originally proposed 
by Donea [22] and further modified to a two-step 
scheme, in a series of papers,  by LShner, Morgan and 
Zienkiewicz [23, 53] and co-workers. Donea's  scheme can 
be obtained by expanding the dependent variable in a 
Taylor series in time, effectuating manipulations similar 
to the Lax Wendroff finite difference scheme and finally 
applying a Galerkin approximation to the resulting 
t ime discretized formulation. Not going through the de- 
tails, the explicit form of the two step Taylor Galerkin, 
TSTG,  scheme consists in obtaining a predictor equa- 
tion for the dependent variable by neglecting the diffu- 
sion te rm so that  the one-dimensional conservative form 
of equation (1) is approximated by 

L[a(uC~)ax + Q] (18) 

From this predictor equation, one can est imate the 
convective flux, ( u ¢ ) ~ + i / e  and, finally, substi tute this 
approximation into the corrector equation, tha t  is, the 
Taylor Galerkin scheme. This procedure is equivalent 
t o  a Galerkin formulation with the convective flux 
explicitly evaluated at n + 1/2. By neglecting the source 
term, the one-dimensional two-step scheme can be 
writ ten as: 

1 ,an+i 3@ 1 ,~n+l ( I + C +  1 ) n 
3 C  Y'i-1 -~ (]~+1 _~_ ~ Y'i+l - ~ (~i-1 

( 1 )  ( 1 )  +2 c + ~  ¢~+ l-C-~-~e ~+1=0 (19) 
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which should be conipared with the scheme obtained 
from the s tandard explicit Galerkin transient formula- 
tion, 

1 ¢~_+11 + 4 ~+i 1 .~,+i 
3 C ~ "* + ~ ~i+l 

(20) 

The T S T G  scheme does not normally reduce to the 
Petrov Galerkin scheme tinder s teady-state conditions, 
and, therefore, the scheme is not applicable to prob- 
lems involving boundary layers. However it does apply 
to a broad class of transient problems involving trav- 
elling waves (with or without diffusion) and pollutant 
dispersion [24]. 

3. A NEW C O N C E P T :  
T H E  D I F F U S I O N A L  M E T H O D  

The following points should be noticed: 

-- the optimali ty of tile Petrov Galerkin, PG, formula- 
tion was proven only for tile case of one-dimensional 
s teady-state convection-diffusion equation; 

.... although important  advances have been made 
[8-10], extending the above variational and PG for- 
mulations to two and three-dimensional problems is 
rather cumbersome, if optimality is at stake. 

A methodology is now proposed which is, at the same 
time, both natural  and extendible to nmltidimensional 
problems. Undoubtedly, if the method to be proposed 
is correct, it should agree with both formulations 
(variational or Petrov Galerkin) shown above since they 
lead to exact solutions. Besides, one should consider that  
it is well known that  the Galerkin FE method leads to 
a best approximation ¢ to the exact solution ¢ of linear 
diffusion equations [12, 54, 55], in the sense that  the 
nth  derivatives of ¢ best fit the nth  derivative of ¢ with 
respect to the energy norm. This extremely basic and 
well-established assertion (theorem) will serve as one of 
the bases for this work. 

Based on the just exposed reasoning, let us accept 
and use the obvious fact that linear and non-linear 
Diffusion Problems (elliptic and parabolic problems) can, 
in general, and in the absence of strong non-linearities, 
be accurately solved by means of any of the classical 
numerical methods, that is, Finite Differences, Finite 
Elements and Finite Volumes, and simply transform 
equation (1) into a diffusion equation by letting 

U ~x ~xx l ~x = A ax B ~x 
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Thus: 

aB £ ~  A F ~ z  =u; A B = - I ~ B = B o e  Tdx (22) 

where B0 is a constant .  The lower limit of integrat ion 
can be changed in the above equation (22). Equa- 
tions (1), (21) and (22) lead to the one-dimensional 
t ransient  diffusional form of the convection-diffusion 
equation (CDE). 

3.1. One-dimensional transient 
diffusional form of the 
convection-diffusion equation 
(CDE) 

at ax re- a~ - -  - -  ~xx + Q = 0 (23 )  

Numerical techniques applied to equation (23) will 
(probably) fail since the original form of equation (1) 
will be restored. In order to avoid tiffs fact, let us simply 
change equation (23) into another  equivalent form. 

3.2. General one-dimensional 
diffusional form of the CDE 

e Ot Ox /We- dx ~ -~-e- f°x ~ dxQ 

(24) 
If one assumes u /F  to be constant  or an average 

within the integrat ion range, then the above equation 
can be wri t ten  in terms of the global P6clet number,  P,  
as the simplified one-dimensional diffusional form of the 
CDE. 

3.3. Simplified one-dimensional 
diffusional form of the CDE 

~t ~x F e  2 P ~ / L ~ x  Q = 0  

(25) 
The above equations (24 25) are in an excellent 

form, suited to be solved by any numericM technique, 
and more part icularly,  by the finite element method.  
They are already its full and natural variational forms 
and also show Petrov-Galerkin-like weighting functions 
nmltiplying the t ransient  and source terms. 

The above concepts can be easily extended to two 
and three dimensions. Again, for simplicity, only the 

expanded two-dimensional forms of the diffusional form 
of the convection-diffusion equation are presented. 

3.4. General two-dimensional 
diffusional form of the CDE 

( f: ' re- 

f:' axa (c ° = 0  (26) 

3.5. Simplified (constant property) 
two-dimensional diffusional form 
of the CDE 

e L ~  Q 

- e % F e - 2  P~ z-7 ~x 

ay ~ = o (27) 

where Px is the global x-PSclet nmnber  (= uLx/2F);  
Lx is any characterist ic  length in the x direction; 
Py = v Ly/21" and Ly are defined mutat is  mutandis.  

Some consequences of the above concepts, which are 
extremely simple in essence, but,  at least in the authors '  
conception, of broad applications,  are the following. 
- Equations (24 27) were obtained in a na tura l  way, 
without  any assumptions whatsoever concerning a 
numerical scheme. In other words, the above formulation 
is independent  of the numerical  scheme and can be 
handled by finite element, finite volume and finite 
difference techniques. 
- The above equation (24) can be applied to linear 
or non-linear problems, compressible or incompressible 
flows; similarly, equation (25) can be applied to 
constant ,  locally constant  or element-averaged Pe 
problems. 
- The cited equations, after a simple Galerkin formula- 
tion, reduce to both  the variat ional  and Petrov-Galerkin 
formulations, when one-dimensional problems are con- 
sidered. 
-- Evidently equations (24 27) could be claimed to 
be in a variational form; however this nomenclature 
variational is not used by other numerical methods 
and, thus, the proposed formulation of diffusional form 
supersedes the terminology of variational.  
- Close examination of equation (27) will show why two- 
dimensional Petrov-Galerkin and Variational Methods 
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have not worked for two and three-dimensional problems: 
one single weighting function would not lead to art 
expression equivalent to equation (27)/ 

The diffusional method can also be applied in 
conjunction with any order of interpolation polynonfials 
used in finite element analysis. 

4. A HYPERBOLIC SCHEME FOR T H E  
O N E - D I M E N S I O N A L  T R A N S I E N T  
C O N V E C T I O N - D I F F U S I O N  E Q U A T I O N  

From equation (17), after the same algebraic manipu- 
lations that  can transform equation (9) to equation (13), 
the following, hereby defined, hyperbolic transient terms 
can be obtained (c~ is defined in equation (12)): 

c~ [Pe(c~ + 1) + 1]; at 

2 [e~  ( ~ '  - 1) + ~1; bt = - ~  

o~ [Pc (o~ - 1) + 1] (28) Ct ~ ~ 

Obviously both the hyperbolic (as described above) 
and exponential (equation (17)) approaches lead to 
the same solutions since they are equivalent. The 
hyperbolic model is easier to apply than the exponential 
counterpart  since the formalism does not involve 
exponentiation. Furthermore, simplifications such as the 
following (among others) can be applied: 

~ ( 1 -  [@e[) sign(Pc), (29) 

with at least five significant figures if ]Pe[ >_ 6 

and 
Pe 

c~ ~ - -  (30) 
3 '  

with at least five significant figures if IPet <_ 0.1 
If variable sized elements and/or  variable coefficients 

are used, the coefficients shown in the table are obtained. 
In the table, the associated local Pc, C and F are 
assumed to be averages of the respective element nodal 
values. The coefficient associated to a constant source 
term Q is & (& = d.~ Q). 

5. T H E  PREVAILING MAIN  GRID 
SCHEME - PMGV 

The capacity (mass) lumping process, based both on 
the integral fornnflation of energy, nmss and momentum 
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(conservation) equations and on a parallel and well 
established procedure employed by the finite volume 
schemes [1] will be used in this work. Thus, for the time 
derivative (accumulation rate) term, let us assume that 
the grid point value at i prevails, such that: 

f ~. ¢i  (~i--1 • ¢p 

4 ..... ~ [Ni N,.+I] { O* } = [Ni Ni+I]  (31) 
(~i+1 

where prec and suc mean the elements that  include, 
respectively, ~ e  i and i - 1 nodes, and the i and i + 1 
nodes; thus, ¢ with any subscript always denotes the ¢ 
value at node i. This assumption (approximation) leads 
to the following form for the time derivative term: 

~ h  Nie_f , ,  dx 0 ¢ ~ h  h ~ [ d x ~  h N , e - f O  -~ d~ Nj dx d : /  

(32) 
This time derivative term can be integrated resulting 

in just one extra term (bt) to be used in the resulting 
transient one-dimensional schemes. In this case, at and 
et are set equal to zero. Another way to obtain the new 
transient coefficients is simply to add the old values 
given in equation (17) and (28); this procedure leads to: 

bt,new = at,old -- bt,old ~- Ct,old, 

at . . . . .  : 0 and ct ..... = 0 (33) 

Now, equation (15) changes into 

as (~i-1 -- (bt ~i 4- bs ~i) -}- Cs ~i+1 + di = 0 (34) 

leading to the PMGV scheme: 

D ,A n+l  ~h n+l  a s v ~ _ l  + (bt + bs0)¢~ +x +c~0~+1 
= - d i  a s ( 1 0 ) ¢ i n _ l + ( b t - b s ( 1  O))Oin--Cs(1--O)~in+l 

(35) 

Tile new bt value equals ds/At. The above equa- 
tion (35) shows clearly the great advantage of using the 
P M G V  scheme: if an explicit scheme is used, the capac- 
itance matrix is diagonalized and no solver is required 
for obtaining the new ¢ values/ 

5.1. Performance analysis of the PMGV 
scheme 

Consider the linear one-dimensional convection- 
diffusion equations obtained by making Q = 0 in 
equation (1), and assuming u and F to be constant: 

O0 + u ~  - F  820 
a-7 ~ =o (36) 
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The exact solution to equation (36) is: 

= ¢ 0  e - r k %  e Ik (~ -** t )  ( 3 7 )  

which is the complex Fourier component  for a single 
wave. In this equation, I = x/=~, ¢0 is an a rb i t ra ry  
constant ,  and k is the wave number,  related to the 
wavelength ~ by: g = 2 ~/k. 

The amplification factor G is, by definition, given by: 

_ ~ ( t  + A t )  _ I &  e ~ (38 )  

Applying  equation (37) in this definition leads to 
the expressions for the modulus and argument of C~, 
respectively given by: 

IGI  = e ~ k ~  _- e (==)= F ( ~ )  = 

and ~ = - k u A t  = - k C h  = - 2 r t c - h  (39) 

where F = F A t / h  2 is the local Fourier number" or 
diffusion number and the rat io g/h gives the number 
of wavelengths contained in the element of length 
h. Equat ion (37) or (39) shows tha t  in tile case of 
pure convection (F  = 0 or Pe = oc) the exact solution 

consists of a travell ing undampened  (IGt = 1) wave. In 
the case of pure diffusion (u = 0), the exact  solution 
is a decaying exponential  with zero phase or argument 
(A = 0). In addit ion,  the following expression relat ing 
F ,  C and Pe holds: Pe = C/2 F. 

The yon Neumann method [2 4, 56] was used to 
accomplish a s tabi l i ty  analysis of the proposed P M G V  
scheme. By this method:  

the boundary  conditions are assumed to be periodic; 

the exact nodal  solution, ¢~, at t ime t (or t ime level 
n), of the finite element scheme is obta ined from the 
following expressions for the general Fourier component  
of the complex Fourier series representat ion of its exact 
spat ia l  dis tr ibut ion:  

¢~ = Ce ' i k h  and, thus, ~ : ~  = Ce I(iJ-1)kh = ~:z e:t:Iikh 
(40 )  

- t h e  ampl i f icat ion factor for the classical one-step 
scheme, equation (15), is given by: 

05nq-1 i k h  i k h  
G - - i  _ a,~ e - I  -[- bn 4- e n e  I ( 4 1 )  

Cn an+l e - I / k  h Jr bn+l q- en+l e I l k  h 

where: 

a,~ =at -a~(1-O);  b~ =b t -b~(1 -0 ) ;  Cn =Ct--C~(1--0) 
(42) 

an+l = a t  -t- a~ 0; b,~+l = b t  -[- b~ 0; e,,+l = ct + c~ 0 
(43) 

- from the rat io of tile amplification factors, G* = G/G, 
one can obta in  the amplitude ratio, IG*I, and relative 
celerity, )¢, by means of the expressions: 

t c * l  = - =  and = ~ -  (44) 
Icl  I~1 

The closer t i le ampl i tude rat io and the celerity 
approach unity, the bet ter  is the performance of 
the numerical scheme. If the I G*I > 1 the method 
is unstable; if I a * l ¢  1 implicit  numerical  diffusion 
occurs. If ~ * ¢  1 then phase distort ion or implicit  
nmnerical dispersion occurs [4]. 

Values for ampl i tude  ratios and relative celerities 
were obtained by means of a symbolic language 
program. Data  referring to the one-step hyperbolic 
scheme, OH, employ the s teady s ta te  and transient  
coefficients given by equations (13), (15) and (28) 
while those referring to the P M G V  model make use 
of equations (13), (28) and (35). 

Performance characterist ics for pure convection are 
shown in figures 1 arid 2 for the two schemes. As 
previously pointed out by Zienkiewicz and Taylor [12], 
the variational,  tha t  is, the OHM scheme, does not lend 
itself to pract ical  use since it is generally unstable.  On 
tile other hand, a drast ic  improvement in performance 
is noticed when the P M G V  scheme is employed. 

The following points should be noticed: 
the PMGV scheme is uncondit ionally stable for tile 

implicit  schemes and condit ional ly stable (C _< 1) in the 
case of the explicit  schemes; 

20 2 . . . . . .  ?~o 
C = 2"".,. 5k,,.,, 10 

• ~ 1.5 0,5 " ' .  ", ,  1.5 

• l~ ~ 1 . 0 ~ I . 0 " " " ' ' " ' % "  ...... 

I 1o, 
oo, 1'o ,~,o 

L / h  

OC . . . . . .  O0 

L ib  

l O  ?.~.o 2.0 

1.5 ............. "~" 1.5 

1 . 0 ~  1.0 

1 °° 
° ~  ;o ,Ga ° 

L I h  

, .o  

jo. O 1o, 
o.c- ! . . . . . .  ;o . . . . . . . . .  ~° 

L I h  

-= . . . . .  C = 1,, 

4o  . . . . . . . . . .  J'° . " J "  . / ' " "  

. . . .  o o ~ # o  
Figure 1. Performance characteristics of the hyperbolic 
scheme as applied to pure convection. 
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Figure 2. Performance characteristics of the PMGV scheme as 
applied to pure convection. 

the P M G V  scheme shows a superior performance in 
terms of relative celerity, even for tile ezplicit scheme, 
as long as C < 1; 

the P M G V  scheme presents increasing dampening,  as 
the scheme becomes more implicit  (as 0 increases); this 
dampening  can, in principle, reduce its appl icabi l i ty  
to non-advection dominated  flows; however it should 
be useful to obta in  s teady s ta te  solutions via transient  
solutions. 

For pure diffusion, for s tabi l i ty  (G -< 1): 
if 0 - 0 and if F 0.5, then the P M G V  is condit ionally 

stable; 
if 0 = 0.5 or 0 - 1 ,  the P M G V  is uncondit ionally 

stable. 

The performance of the P M G V  scheme under 
convection-diffusion was analysed by means of symbolic 
programming;  the main conclusions were: 

if 0 - 0  and if (but  not necessarily) F < 1/4, the 
P M G V  is condit ionally stable; 

if 0 - 0 . 5  or 0 = 1, the P M G V  is uncondit ionally 
stable; 

if, in the  explicit  scheme, F -- 1/6, then the order of 
the t runcat ion  error is O(At  2) + O(Az2); 

once F -< 1/4, the explicit  scheme is convergent for 
all Pc; this is a very impor tan t  conclusion, since as Pc  
increases, necessarily F decreases, and the l imitat ion 
above is restr ic ted to small  Pc. 

Consistency of equation (35) was investigated by 
expressing each of its terms in a Taylor series abont  
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the base grid point 4)~ and comparing the resulting 
modified differential equation with the series expansion 
of tile actual  equation (37). Tile finite element scheme 
proved itself to be consistent with t runcat ion error 
O(At)  +O(Az2) .  For completeness, this fact is confirlned 
by comparing the following Taylor series expansions of 
equations (38) (for all Pc) and (41) (for 0 - 0  and 
Pe  --* eo only, due to tile high complexity of the 
associated expansion): 

C ( 1 )  2 + O ( c r 3 )  (45) d = l - I C a -  7 C - F e  

G =  1 - I C a  0.5C2o-2+0(cr 3) (46) 

where c~ - 27~ h/g. 

5.2.  L u m p e d  c a p a c i t a n c e  m a t r i x  s c h e m e  
o f  t h e  t w o - s t e p  T a y l o r - G a l e r k i n  
( T S T G )  s c h e m e :  t h e  T S T G - ~  s c h e m e  

The two-step Taylor Galerkin (TSTG) scheme is 
very effective; it is, however, l imited to C_<0.57, in 
its explicit form [24, 25]; other Taylor Galerkin (or 
characterist ic)  schemes may lead to increased stable 
ranges of C values [24, 25]. Peraire et al [24] show the 
destructive effect of a lumped capacitance matr ix  on a 
simple convection problein. 

In this work, the lumped form of the TSTG scheme, 
from now on called the T S T G - a  scheme, will have two 
main purposes: 

first, to show tha t  the dissipative nature of the 
T S T G - a  scheme decreases substant ial ly  as the mesh 
is refined and, thus, the resulting approximations 
approach definitely the results obta ined fi'om the 
appl icat ion of the TSTG scheme. 

secondly, to ascertain the fact that if in the PMGV 
scheme a (table) is replaced by C, the resulting scheme 
will perform identically to the TSTG-a scheme; in other 
words: 

Modified PMGV scheme or PMGV-c~ scheme 

= T S T G - c t  s c h e m e  ~ Make a = C 

in all coefficients shown ill the table. 
A consistency analysis shows tha t  the above scheme 

is second-order accurate.  Performance (stabili ty) curves 
are shown in figure 3a b. It is clearly shown tha t  tile 
modified model is stable for C _< 1; in addition, it shows 
less dampening effect than tire original PMGV,  but  is 
more dampening than the original TSTG scheme (see 
[25]). 

The f lmdamental  idea behind using the T S T G - a  
scheme is tha t  by halving the spacing (h) value, the 
dampening effect is reduced; the cost of doubling tile 
nmnber of elements nmy be balanced by the increased 
allowed C-values and the associated diagonally fllll 
explicit scheme. 
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TABLE 
Coefficients for the transient one-dimensional 

diffusional scheme. 

hi+l [Pei+l (c~+1 + 1) + 1] 
a s  

Fi+l 

Cs 
h~ [Pei (cti - 1) + 1] 

F~ 

b~ - ( a s  + e~) 

a t  

Ct 

bt 

d~ = (at -t- bt q- ct) At 

ogi a s  

Ci 
O~i+l a s  

Ci 

a~ [c~i + Pei (ai - 1)] 
as (f i  

q - ~  [O:iW1 --  P e i w 1  (OZi+I -}- 1)] 
t ~ i + l  

as h~ Cs h/2+l (c~i+l 4- 1) 

oo, , ~o - - .0 

k]h 

. ..;:~::-::: ...... __ 1.0 

' ' o ,  

3.1 . . . . .  10 ' ' oo~,{ - .o 
L I h  

a) b) 
Figure 3. Performance characteristics of the TSTG-ct scheme 
as applied to pure convection. 

A series of examples, to be shown ahead, will serve to 
depict the behaviour of both  the PMGV,  in its explicit 
and implicit forms, and the T S T G - a  schemes. 

6. TIME ADAPTIVE SCHEMES 

6 .1 .  B i x l e r ' s  i m p l i c i t  a d a p t i v e  t i m e  
i n t e g r a t i o n  s c h e m e  

As previously mentioned, Bixler [50] altered Gresho 
et al.'s [49] t ime integration scheme (GLS scheme) by 
incorporating modifications to enhance accuracy and 
stability. Given the first order differential equation 
(readily expandable to a system of ordinary differential 
equations): 

= f(y, t)  (47) 

Bixler's scheme consists basically in: 
using tile second-order-accurate Adams-Bashforth 

scheme as predictor: 

Y n + l = y n + ~  - 2 + At~_l ] !tn -- - -  

(48) 
where the superscript p refers to predicted value and 
tile derivatives (rates of change) at t ime planes n -  1 
and n; 9n-1 and 9~ are respectively approximated by: 

Atn-2 (Yn -- y n - 1 )  

1 ( > - l -  (49) 
zr A tn - i  + Atn-2 \ At,~-2 // 

and the trapezoid rule: 

2 
y n  = l[-~--tn---- ( Y n  - - y n - - 1 )  - - Y n - - 1  ( 5 0 )  

using the one-leg twin form of the trapezoid rule as 
corrector: 

YaW1Q-yn/ktn -- f ( Y n W l ;  yn tnW2-+ (51) 

predicting the t ime-step size by means of the 
expression: 

A t a + l = A t ~  ( ~ )  ½, (52) 

where 

: - -  Y a w 1 )  ( 5 3 )  d~+l 2 +/3 + 3 A ta -1 /A t~  (y~+l P 

In the above equations n, n - 1, n - 2 and n + 1 refer 
to t ime levels; 0 < ~_< 1 is suggested to take the value 
0.25 (if the GLS scheme is used, then/3 = 1; this is the 
choice in this work). Taking the superscript E to refer 
to the exact solution, tile local t ime truncation error 
est imate relative to equation (48) can be obtained by 
means of Taylor series expansion as [49]: 

n 1 At  a f(y, t )  + O(At 4) (54) yawl - -Yawl  = 

Similarly, the local t runcation error for equation (51) 
is given by [50] 

E / 3  y ,~+l  --  Yn-}-i = ~ A t 3  f ( y , t )  ~- O ( A t  4) ( 5 5 )  

Combination of the above two equations (54 and 55) 
allows one to obtain the t ime-step size, equation (52). 

It  should be noted tha t  Bixler's scheme requires 
solutions at three preceding time- steps. Adaptive t ime 
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stepping can s ta r t  at the  fourth step. Furthermore,  
a norm such as the root means-square (RMS) should 
replace the absolute norm in equations (52 and 53) 
when a system of equations is to be solved. 

6.2. Other integration formulas 

Gresho et al. [49] suggested a scheme (GLS) using 
the explicit  forward Euler (FE),  as the predictor  and, 
as the correetor, the implicit  backward Euler (BE). 
For bo th  the second and first-order schemes, GLS 
recommends the one-step Newton-Raphson method to 
solve the implicit  correctors. Following GLS, the GLS-E 
scheme (E, for Euler), because of its dissipative nature,  
should be used only as a nleans for obtaining s teady- 
s ta te  solutions. 

Several other  t ime adapt ive  integrat ion techniques 
were investigated in a search for adequate  adapt ive 
integrat ion techniques for both  the explicit  and intplicit 
forms of the P M G V  method.  Among others, the 
following methods  were tested: 

(1) Adams-Bashfor th  predictor  associated to the 
explicit  Euler  corrector: AB-E scheme. 

(2) Second order scheme: modified-GLS (MGLS); 
here, instead of using equation (51), the explicit form 
(by making use of the predicted value) of the t rapezoid 
rule was used as corrector; no use was made of the 
Newton Raphson method.  The rest of the procedures 
followed Bixler 's method; 

(3) first order schemes using mixed forms of Euler, 
Adams  Bashforth and t rapezoidal  rules. 

7. EXAMPLE PROBLEMS: TRANSIENT 
ONE-DIMENSIONAL LINEAR 
CONVECTION-DIFFUSION 

7.1. Transient one-dimensional linear 
convection-dif fusion 

This example problem will serve to i l lustrate the 
behaviour  of the P M G V  scheme when applied to solve 
boundary  layer problems. I t  was used by Hoffman [4] 
to i l lustrate the behaviour  of several finite-difference 
numerical  scheines appl ied to the convection-diffusion 
equation. The problem consists in solving equation (36) 
with the following boundary  ( D i r i c h l e t )  and initial 
conditions: ¢(z,0) = x/L, ¢(0,t) -- 0 et ¢(L,t) = 1. 

The analyt ical  solution is: 

" "  ( P )  
*'~ 4 r t e ~ -  sin ~- 

e ~ -  - 1  E 
¢(z,t)-- ep ~ + ~ Z 1  A~ 

r n , - - 1  

+2r t e  Tr  B,~ (56) 
m = l  

where P is the global P6clet nuinber and: 

B~, = 

Am = ( - 1 )  '~' ~ sm 

/3,~ = + ( m r t )  2 and X~- L2 

The numerical results, obta ined for L = 1, confirmed 
the previous performance analysis of the P M G V  scheme. 
Figure 4a shows tha t  the explicit scheme presents 
be t te r  accuracy than  the implicit  schemes. Even tile 
explicit forln of the P M G V  scheme is not subject  to 
any restrictions whatsoever on Pc; as Pe  increases 
the restr ict ion imposed on F,  for stability, is reduced. 
Figure 4b shows tha t  by decreasing the t ime step (C) 
the accuracy tends to increase as long as F gets smaller 
than 0.25; al though results are shown only for 0 = 0, 
the same reasoning applies to the implicit  schemes. It 
should be mentioned that ,  following [4], all ifine of the 
most common finite difference seheines are not stable 
for Pe  _> 1 and are, in its heavy majority,  restr icted to 
F _< 0.5, al though their  s tabi l i ty  analysis nfight indicate 
otherwise. The P M G V  scheme always converges to the 
exact values, independent ly  of the Pe Immber, as long 
as the s tabi l i ty  cri teria are obeyed. Needless to say, large 
Courant  numbers (C > 1) can be used with the implicit  
forms of the P M G V  if only s teady s tate  solutions are 
aimed at. Addit ionally,  but  not exemplified for brevity, 
for all schemes, mesh refinement improves the accuracy. 

The TSTG and TSTG-ct schemes present tiine 
degrading and oscil latory s teady-s ta te  solutions when 
Pe  is larger than  1.5; the results reselnble the ones 
presented by the s tandard  Galerkin scheme and, thus, 
both  schemes are not applicable to this type of probleIn, 
in the whole range from transient  to s teady-s ta te  
conditions. For this reason, inherent example solutions 
are not shown. 

PBilnl~r,s: u~O.1 ; F - 0.25 

*:':7 

P a r a n ~ :  

"I ...... 2 '  ...... 
0.8 f 
0.$ ~ C=0,1 ; F:0.025 

o C=O.S ; F-0.125 
0.4[ ; ~ C -1 .0  ; F=O.2SO 

0.2 

0.0 . . . . . . .  , 

0.0 0.2 O~ O.6 O.8 1.0 0.0 O.2 0.4 0.6 0.$ 1.0 

X X 

a b 

Figure 4. Solutions of the one-dimensional transient con- 
vection-diffusion equation; (a) comparison of explicit and 
implicit schemes; (b) effect of the Courant number on the 
numerical accuracy of the explicit scheme. 

790 



The one-dimensional transient dif fusional method 

7.2. Transport  of  a Gaussian waveform 

A rather 'classical' problem [12, 25, 28] is the 
pure convection of a waveform. Here the Gaussian 
distribution: 

= e -400D-u(l+t)]2 (60) 

with u = 0.25, and 0 < x < 3, was used to evaluate the 
performance of the different schemes under transient 
conditions with no boundary layers. 

Figure 5 shows the behaviour of the different 
schemes. It can be observed that: 

the PMGV scheme is highly dissipative and should 
not be employed to solve this kind of problem. It should 
be noticed that  as C increases (figure 5a), so does the 
performance of the PMGV scheme; thus, if high values 
of C and very fine meshes (figure 5d) can be used, 
the PMGV scheme, will be a choice to consider due 
to the fact that  it does not show dispersion errors. 
However, problems involving such a situation are rare 
or expensive, but, as computer power increases, this 
might become an acceptable choice; 

the TSTG-c~ scheme shows much more dispersion and 
diffusion errors than the TSTG scheme (figures 5b and 
5c); in the case of the TSTG-c~ scheme, as C increases, 
the dispersion and the diffusion errors decrease and 
reach zero vahms at C = 1 (figure 5c); at low levels 
of refinement, the TSTG scheme, although presenting 
a definitively better  performance than the TSTG-a ,  
shows pronounced dispersion errors at low and close to 
its limiting upper C vahm of 0.57; its best performance 
is obtained for C = 0.25, at least for this travelling 
waveform example. 

1.0 - - e x l ~  o,e i ,  c - o . o I ;  c - o , I  
2.  C - 0.211 0.8 1. C - O . O I  

~. c - o , s  0"8 2+ C - 0 . 1  
o . 1  + c - o I 

+ 3. c - o.2s 

0 . 4  4 3 2 ~ 0 .4  ,L C - 0 . 5  
0 ,8  'l 2 4 

o.= OO ^ 

o . o  + . . 
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Figure 5. Behaviour of the explicit PMGV, TSTG and TSTG- 
c~ schemes when applied to the pure waveform convection 
problem. 

if a more pronounced refinement is made 
(figure 5-d), at C = 0 . 5 ,  both methods TSTG and 
TSTG-a ,  are highly acceptable; the trade-off concerning 
the more pronounced dispersion error of the T S T G - a  
scheme is the fact that  it allows stable and accurate 
solutions up to C = 1 and a diagonalized capacitance 
matrix. 

7.3. Solution of  the viscous and non- 
viscous Burger's equation 

Burger's equation is considered a benchmark, when 
non-linear convection-diffusion problems are considered. 
Now, solutions are presented for the viscous Burger's 
equation and its non-viscous form: 

a0 a0 a2~5 
a-7 + ¢ g - v ~ = 0 (61) 

with the following boundary and initial conditions: 
qS(0,t) = 1; ¢(m,0) = 0; qS(oc,t) = 0. 

The solution of this problem is available [30, 31]; one 
solution, valid for large times (asymptotic), is [3]: 

1 
-- (62) 

1 + e[ x~°~s'] 

Computer simulations revealed that  the behaviour of 
all three schemes, but, more sensibly, the TSTG scheme, 
depend heavily on the Fourier number. The TSTG 
scheme has been known not to lead to inaccurate results 
when applied to solve Burger's equation; balancing 
diffusivities [57] and flux correction [53] have led to 
improved results. No such approximations were used in 
this work. 

Again, computer experimentation and the results 
shown in figure 6 (a-c) revealed that: 
- when the F value was set to values above approx- 
iinately 0.1, independently of Re(= 1/F), the TSTG 
scheme presented oscillatory or highly diverged results; 
as F approached 0.1, the oscillations disappeared but  
the results showed waveforms advanced with respect to 
the exact solution; 

the PMGV and T S T G - a  schemes led to accurate 
results, given the mesh refinement shown; ~51rther mesh 
refinement led to even better  results as can be seen in 
figure 6c; the PMGV scheme allows coarser refinement 
and does not show oscillatory results. 

8. T IME ADAPTIVE FINITE ELEMENT 
SCHEMES FOR CONVECTION-  
DIFFUSION PROBLEMS 

The same three different problems, two linear and 
one non-linear, involving convection-diffusion, pure 
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F i g u r e  6. Solutions of Burger's viscous (a, b) and approxi- 
mately non-viscous (c) equat ion  under  d i f ferent  schemes and 
t ime steps. 

convection and non-linear Burger 's  equations were used 
to investigate the usefulness of the proposed adaptive 
schemes or part of them, as applied to the P M G V  
(diffusional), T S T G  and TSTG-c~ schemes. 

8 . 1 .  T r a n s i e n t  o n e - d i m e n s i o n a l  l i n e a r  

c o n v e c t i o n - d i f f u s i o n  

Again, Hoffman's [4] example problem will serve 
to illustrate the behavior of the P M G V  scheme when 
applied to solve boundary layer problenls. Numerical 
solutions were investigated for Pe  ranging from very 
small (Pc = 0.05) to pure convection (Pc  = oc). 
Numerical solutions were obtained by taking L = 1, 
u = 0.1, Ax  = 0.1 and adjusting F so as to obtain the 
desired Pe  value; tile initial t ime step was taken as 10 -a. 

A series of benchmark solutions showed that  only the 
MGLS scheme was roughly competi t ive in relation to 
Bixler and the AB E scheme; however it was discarded 
since it did not offer any advantage with respect to the 
A B E  scheme. The results obtained by means of the 
other methods showed that  they were highly inefficient 
and, consequently, they will not be analysed here. Thus, 
in tile discussion below, only Bixler and the AB E 
schemes will be considered. 

Figure  7 shows the simulation results for both Bixler 
and tile AB-E schemes at  t = 7. Figure  7a shows that  
the AB E scheme led to exact results for pure  convec t ion  
when the t runcat ion errors were e = 10 -1 and 10 2. 
This is due to the fact that  at low truncat ion errors 
the t ime increment fast reached the value such that  
C = 1; at this Courant value, the explicit scheme leads 
to exact solutions. At the just  cited truncat ion errors, 

11 t ime levels were required to reach t = 7. Further 
decrease of the truncation error to 10 -a and 1 0  - 4  

decreased the accuracy, while tile number of time levels 
went up to 14 and 23 respectively. Bixler's method 
led to essentially the same results, independently of 
the assumed truncation error (e_< 10-1); however, the 
required number of time levels increased substantially 
with a decrease of tile assumed truncation error; in this 
way, rz increased from 11 to 21 when e decreased from 
10 -1 to 10 -a. Independently of the assumed truncation 
error, the AB-E scheme led to more accurate results 
than Bixler's. 

At P e  = 5 (figure 7b), the AB-E scheme performs 
better  when e = 10 a and reaches t ime t = 7 within 14 
t ime levels. Tile numerical results do not differ from 
the ones for pure convection. Again, as in the case 
of pure convection, the A B E  scheme is much more 
accurate than Bixler's. The accuracy of Bixler's scheme 
is insensitive to the assumed truncation error; in this 
case, the resulting solutions and required time levels do 
not differ from the ones obtained for pure convection. 

A t  P e  = 2 (figure 7c) the accuracy of Bixler's scheme 
is again insensitive to the assumed truncat ion error. 
The AB-E scheme leads to more accurate results 
than Bixler's scheme, independently of the assumed 
truncation errors; its best accuracy is obtained for 
e = 10 4. At P e  = 0.5 (figure 7d), Bixler's scheme starts 
becoming more efficient both in terms of accuracy and 
required time levels for a given simulation time. The 
A B E  scheme required 2a and 15 time levels for e = 1 0  - 4  

and 10 a respectively, while Bixler's scheme required 
15 time levels when e = 10 a. For P e  values lower than 
P e  = 0.5, Bixler's scheme becomes much more efficient 
than the AB-E scheme. 

Figure  8 shows the evolution of the standard devia- 
tions of the results obtained from Bixler and the AB-E 
schemes up to t = 20, which corresponds to approximate 
steady state conditions. The number of t ime steps (n) 
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F igure  7. Solut ions to the convect ion-d i f fus ion  equat ion,  at 
t = 7 .  
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required to reach t = 20 is also shown. It can be noted 
that  as Pe decreases, Bixler's scheme becomes more 
and more efficient. However, the AB-E scheme works 
better  as long as Pe > 0.5. It should also be noted that  
the AB-E scheme eliminates the restriction of F < 0.2,5 
and C < 1, as can be seen in figttre 8f (note that  wizen 
Pe = 0.5, C and F are identical). However, if no control 
is made on the F values, specially at low Pe values, 
the s tandard deviation may show oscillatory results, as 
shown in figure Be, where the F values went as high 
as 9. 

Again, as in the case of non-adaptive procedures [58] 
and as seen before, the TSTG and TSTG-c~ schemes did 
not converge for Pe greater than 1. 
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Figure 8. Standard deviation of Bixler and AB-E schemes u p  

to  t = 2 0 .  

Figure 9a shows how the TSTG scheme behaves, 
as a function of the 'assumed error', e; the data  
were obtained for Az = 0.05, and an initial time step 
of At = 0.001. It can be observed that  as the error 
decreases, the numerical results tend to align with 
respect to the exact solution; at an error level of 
e - 1 0  3 oscillations are mininfised. The cost of a 
better  approximation is high, as can be noticed fl'om the 
necessary number of time steps, n. Fig~me 9b shows that  
by increasing the error level e the accuracy increases, for 
the given mesh refinement; when e = 0.1, ~ - 24 and the 
numerical solution is very close to the analytical solution 
(and, consequently, is not shown). The effect of mesh 
refinement can be seen in figures 9c d; in figttre 9d, 
the results for e = 10 -2 do not differentiate from the 
exact ones. As the mesh is refined, the numerical results 
becoine more accurate if ~ < 1-3 for the TSTG scheme 
and if e > 10 a for the TSTG-c~ scheme. As a rule of 
thumb, the adaptive time refinement process is more 
efficient and accurate than the use of a constant time 
step; however, associated efficiency figures are sensitive 
to the scheme at hand, to the number of time steps as 
defined by the assumed error level, to the initial time 
step and, thus, are not shown. 
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Figure 9, Performance of the TSTG and TSTG-c~ schemes as 
affected by assumed error levels. 

8.2.  T r a n s p o r t  o f  a G a u s s i a n  w a v e f o r m  

Now, the problem of transport  of a Gaussian wave 
was used to evaluate the performance of the TSTG 
and TSTG-(~ schemes under the time adaptive scheme 
obtained by using the Adams-Bashforth algorithm to 
generate the predictor, equation (48) and Bixler's time 
step updat ing formula, equation (51). As shown before 
in this work, the diffusional scheme is dissipative 
and should not be employed to solve travelling wave 
problems (unless Pe is very small, Pe < 2). 

8.3.  So lu t ion  o f  t h e  v i s c o u s  
a n d  n o n - v i s c o u s  Burger 's  e q u a t i o n  

Now Burger's equation is considered for the adaptive 
transient analysis. 

Again, the simulated results shown in figure 10 were 
obtained by assuming that  the initial time step was 
0.001, Re = 1/F and the final simulation time was 1. 
Figures lOa (viscous condition) and 6d (approximate 
non-viscous condition) show that,  in tile case of the 
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P M G V  scheme, t ime adapt ive  integrat ion by means of 
the AB-predie tor  adjus table  t ime step leads to excellent 
results; it should be noticed tha t  small e values may 
result in oscillations. Adapt ive  t ime integrat ion does 
not apply  in all effective way to tile TSTG-c~ scheme 
(figure lob); however, a fixed tittle step procedure leads 
to good results. Tile T S T G  scheme is not amenable to 
tittle adap ta t ion  and special shock captur ing techniques 
should be employed, at higher Re values; even for 
Re = 10, s t rong oscillations appeared  when e = 10 3. 

1. ' " ~ ? . -.D-- noadeptd~ ;n - l ( lO0  11 --o--~lKlepfat ion;n- lO00 
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Figure 10. Solutions of Burger's viscous and non-viscous 
(Re = 100 000) equation under different schemes. 

9 .  C O N C L U S I O N S  

This work presents a diffusional approach to solv- 
ing the convection-diffusion equation tha t  leads to tile 
variat ional  one-dimensional s teady-s ta te  Galerkin for- 
mulation.  The new concept for solving the convection- 
diffusion equations by means of a diffusional model  can 
be ex t rapola ted  easily to mult idimensional  problems 
with no recourse to whatsoever ad-hoc improvements.  
In addit ion,  further s tudy  was made on the performance 
of the one-dimensional lumped capaci tance form of the 
diffusional method,  which is equivalent to the variat ional  
method.  Thus, tile Prevail ing Main Grid Value (PMGV) 
scheme is presented and it is shown to be uncondition- 
ally s table in its implicit  forms and condit ional ly stable 
in its explicit  form. The explicit  form requires tha t  
C_< 1; in addit ion,  for low Pc,  the Fourier number (F) ,  
should be F _< 1/4. Differently from the usual finite dif- 
ference schemes, all P M G V  schemes converge for all Pc. 
Furthermore,  tile lumped one-dimensional form of the 
two step Taylor Galerkin scheme was investigated as to 
its range of applicability.  

Benchmark solutions involving boundary  layer for- 
mation,  travell ing wave and Burger 's  equations were 

used in the analysis and as example problems. Tile 
main conclusions were: 

tile PMGV scheme, both in its implicit  and explicit  
forms apply to boundary  layers transient  problems and 
to solve the non-linear Burger 's  equations; consistently, 
tile explicit form is more accurate; the P M G V  scheme 
is not well suited to solve travelling wave prohlems; 

tile T S T G - a  scheme can be used to solve the non- 
linear Burger 's  equation accurately; however its range 
of F-values for non-oscil latory results is smaller than 
tile ones applied to the PMGV scheme; 

both the TSTG and T S T G - a  schenms do not apply 
to boundary  layer transient  problems, unless very small 
Pe  and F numbers are used. 

The performance of the diffusional method was also 
evaluated as to its adaptiveness by using it in associ- 
at ion with a second-order Adams Bashforth predictor  
and the implicit  (0 = 0.5 Bixler) and explicit (back- 
ward Euler or fully explicit) forms of the diffusional 
method were used as eorrectors. Tile main conclusions 
were tha t  the explicit  scheme (PMGV) is more accurate 
and computa t ional ly  more efficient than the implicit  
(Bixler) version when applied to a linear boundary  layer 
problem; for this problem the adaptive technique al- 
lowed overcoming the l imitat ions of convection number, 
F < 1/4, and Courant  number,  C < 1. The t ime adap- 
tive PMGV scheme proved to work very efficiently when 
solving Burger 's  equation, both  under viscous and non- 
viscous conditions. The diffusional method is not well 
suited to travelling wave problems. 

In addition, tile performance of the one-dimensional 
form of the two-step Taylor Galerkin (TSTG) scheme 
was investigated as to its abil i ty to be used in 
conjunction with a t ime adapt ive  integrator.  Both 
the explicit  and fully lumped (TSTG-c~) schemes 
work well under adapt ive  integration for solving linear 
travelling wave problems; for these problems, the TSTG 
scheme is more accurate than tile TSTG-~  one. Time 
adaptiveness,  in terms of the proposed techniques 
presented in this work, are not reconunended for both  
tile T S T G  and TSTG-c~ schemes, when one is interested 
in solving Burger 's  non-linear equation. 

This work serves as all introduct ion to the applicat ion 
of the diffusional method to the solution of mult idimen- 
sional problems, including Navier-Stokes problems. 
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